
A REPRESENTATION
FOR COLLECTIONS OF TEMPORAL INTERVALS*

Bruce Leban, David D. McDonald and David R. Forster

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT

Temporal representation and reasoning are necessary
components of systems that consider events that occur in
the real world. This work explores ways of considering
collections of intervals of time. This line of research is mo-
tivated by related work being done by our research group
on appointment scheduling and time management. Natu-
ral language expressions that refer to collections of inter-
vals are used naturally and routinely in these contexts, and
an effective means of representing them is essential.

Previous studies, which considered intervals primarily
in isolation, have difficulties in representing some classes
of expressions. This occurs not only with expressions that
explicitly refer to collections of intervals, such as “the first
of every month,” but also with expressions that do so only
implicitly, such as the U.S. Election Day: “the first Tues-
day after the first Monday in November.” The traditional
solution to this problem has been to provide special means
of specifying those forms that are judged to be the most
useful (to the exclusion of all other forms).

The “collection representation” builds on previous
work in temporal representation by introducing operators
that allow the representation of collections of intervals,
whether they occur explicitly or implicitly in the expres-
sion.

The operators introduced are natural extensions of the
relations and operations on intervals. The representation
has potential use in scheduling in three areas: graphical
display, natural language translation, and reasoning.

I PRIOR WORK

Much of the work on time has focused on temporal
reasoning (as opposed to temporal representation). For
example, Rescher and Urquhart (1971) and van Benthem
(1983) describe temporal logics for reasoning mathemati-

* This work was supported in part by the Air Force Systems Control,
Rome Air Force Development Center, Griffiss AFB, New York, 13441
and the Air Force Office of Scientific Research, Bolling AFB, DC 20332
under Contract No. F30602-85-C-0008 and by the National Science
Foundation under Support and Maintenance Grant DCR-8318776.

tally about time. The logics are based on the concept that
instead of a predicate calculus statement being universally
true or false, it may be true or false at different moments
of time. Temporal quantifiers (much like the universal and
existential quantifiers) are used to augment the calculus.

Allen (1983) d escribes a computational approach to
maintaining knowledge about events in time, for use in AI
systems that reason about temporal knowledge. Allen’s
representation takes the concept of a temporal interval as a
primitive and explicitly allows representations of indefinite
and relative temporal knowledge. A temporal interval is
used as the primitive unit because reasoning about points
in time frequently yields counter-intuitive or paradoxical
results.

Ladkin (1985, 1986a) makes an argument for the use
of non-convex intervals for reasoning. A convex interval
is an interval in the usual sense: a contiguous period of
time. A non-convex interval is an arbitrary union of convex
intervals.

In this paper, it is assumed that a temporal structure
based on convex intervals has been defined that has a useful
set of operations and relations (see appendix). We believe
that the work could be extended to temporal structures
based on time-points or non-convex intervals.

II COLLECTIONS OF INTERVALS

An interval t is denoted by (ta, TV) or (tcr; ts) where
ta, TV and ta + t6 are real numbers denoting moments in
time; the interval starts at time tcu and extends through
time tg or t, + tb?*

A collection of intervals is a structured set of inter-
vals. The order of a collection is a measure of the depth
of the structure. An order 1 collection is an ordered list
of intervals. This is somewhat similar to a non-convex
interval except that the maximal convex subintervals of

** We ignore the sticky questions of whether the intervals are open
or closed and whether time is represented in a continuous or discrete
fashion, as these issues are largely irrelevant to the work discussed
here. We assume that if t and u are intervals and tp = u,~ then
tuu= (tcx,up).

KNOWLEDGE REPRESENTATION / 367

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

a non-convex inteFva1 are disjoint and the order they are
given in is immaterial. An order n collection (n > 1) is an
ordered list of order n-l collections. The notation used
for collections is essentially set notation, except for the un-
derstanding that the order of elements is maintained. For
example,

{{%x2}, {x3+4), {x5}}

is an order 2 collection. The collection of Thursdays (which
contains all the Thursdays in order) is an example of an
order 1 collection. The collection of months where each
month is represented by a collection of the days in that
month (in order) is an order 2 collection.

A. A Formula Approach

Many useful collections can be described by arithmeti-
cal formulae, but there are subtle difficulties with this. We
reject this approach for the reasons outlined in this section.

Given an appropriate definition for day representing
the length of one day and, for convenience, assume that
time to is Saturday, December 31, 1904, midnight, the col-
lection of Thursdays can be described by the formula:

Thursdays = {(q lday) 1 Q! = 5days + to (mod 7days))

We can generalize Thursdays by replacing the 5 with any
other value. In other words, it can be understood that
Tuesdays is an essentially similar collection to Thursdays.

The same approach applied to construct the collection
of all Januarys is less successful. Since every fourth year
is a different length, one possible formula is:

Januurys = { (cr; 3lduys) 1

((1: + to mod 1461days) E {0,365,730,1095} }

This formula is considerably more complicated than the
one given for Thursdays .* More importantly, it fails to
provide a means of conveniently recognizing Augusts as
a generalization of Januarys. To generalize from Januarys
we would need to replace each of the values (except 1461)
with appropriate new values: the chance of an arbitrary
substitution producing a reasonable generalization is quite
small. Essentially, the formula is in a “compiled” form that
is quite distant from how the concept would naturally be
expressed.

The formulae become even more complicated when New collections can be built by combining other col-
new collections must be built from existing collections. For lections using these operators. The calendars serve as a
example, consider “the first Thursday of every January.” basis for this construction. Since the calendars are not suf-
This requires combining the collection of Thursdays and ficient for reasoning about statements that reference col-
the collection of Januarys to produce a new collection. Fur- lections that might not yet have been defined or might
thermore, the system must allow for collections to be com- include unknown intervals in the future (e.g., “when Di-
bined in fairly arbitrary ways, since it will not be possible ana is at work”), collections can also be built by predicate
to predict all useful specifications. reference.

III THE COLLECTION REPRESENTATION

The foundation of the collection representation is a
set of primitive collections called calendars. A calendar
is a collection consisting of an infinite sequence of inter-
vals that span the timeline, i.e., ti meets ti+l for any two
consecutive intervals. A calendar may have a first interval
(the first moment in time the system is prepared to con-
sider), but does not have a last interval. Days, Months and
Chinese- Calendar- Years are instances of calendars.

Two new classes of operators, slicing and dicing, are
defined to operate on collections of intervals. The dicing
operators provide means of generating collections from in-
tervals, for example, to break a collection of intervals into
smaller intervals. In Figure 1, a dicing operation is illus-
trated between the first two steps. This operation replaces
each interval on the left (a week) with a collection of subin-
tervals (the days in that week).

The slicing operators provide means of selecting in-
tervals from collections of intervals, for example, to select
the first interval of a collection. In Figure 1, a slicing op-
eration is illustrated between the second two steps. This
operation replaces each order 1 collection (a collection of
the days in each week) with a single interval (the fifth day
of each week).

I I

. . I

. Dicing . Slicing .

. . .

Weeks Days :during: Weeks

Figure 1. Slicing and Dicing

S/Days :during: Weeks

The terms “slicing” and “dicing” are chosen for both
their euphonic and metaphoric appeal?‘: The operators
have a right-to-left precedence. Each operator corresponds
roughly to a preposition, so these expressions can be read
naturally by someone who speaks a prepositional language
(e.g., English).

* It would be even more complicated if it were correct: the Gregorian
calendar specifies that only 97 out of every 400 years are leap years.

** If these terms seem to have conflicting meanings, “Slicing” can be
thought of as corresponding to “Selection” and “Dicing” to “Dividing
up”.

368 / SCIENCE

A. Primitive Collect ions B. The Dicing Operations

A calendar is defined by specifying the intervals of
which it is composed. The notation ((a; 61; 62;. . . ; 6,)) de-
notes the calendar

{(a;61),(a:+61;~2),..., (~+~s;,6n),~a+C6i,61),. 4.
i<?I-1 i<n

The list of &values is treated as if it were a circular list.

A calendar can also be defined by specifying how it is
to be constructed from another calendar. This is denoted
by ((C;sl;s2;...; Sn)) to indicate that the first interval of
this calendar is the union of the first s1 intervals of C; the
second interval is the union of the next s2 intervals of C,
etc. As above, the list of s-values is treated as a circular
list.

If we assume that the unit of measure is 1 second, we
might have the following definitions:

Days s ((to; 86400))

Months E ((Days;31;28;31;30;31;30;31;31;30;31;30;31;
31;28;31;30;31;30;31;31;30;31;30;31;
31;28;31;30;31;30;31;31;30;31;30;31;
31;29;31;30;31;30;31;31;30;31;30;31))

These definitions are intensional rather than extensional.
That is, while a calendar defines an infinite data struc-
ture, it does not require that an implementation actually
build the complete structure, but only that it build those
portions of the structure it needs.

Collections can also be constructed from a predicate.
The collection ((Condition)) is the minimal collection of
intervals C that satisfies the property that there does not
exist an interval t disjoint from C, such that Condition is
true during t. This definition is carefully constructed to
avoid the question of whether the predicate operates on
intervals or points.

a. Weeks :overlaps: (Januaw1986) b. Weeks .overlaps. (January-1986)

c. Weeks :during: (January-1986) d. Weeks .<. (January-l 986)

Figure 2. Dicing Operators

The dicing operators are extensions of the relations on
intervals (listed in the appendix). A dicing operator takes
an order 1 collection as its left argument, an interval as
its right argument and produces an order 1 collection as a
result. A dicing operator can also take a collection as the
right argument, in which case it operates on each interval
in that collection.

For each relational operator (R) there are two dicing
operators: strict (:R:) and relaxed (.R.). If C is an order 1
collection and t is an interval, the dicing operators are
defined by:

C :R: t G {c n t] c E C A c R t} \ {E}
C .R. t z {c] c E C A c R t} \ {E}

The effect of a strict dicing operator is to break up t into
pieces according to C. An illustrative example occurs
when C is a calendar. The expression Weelcs :overlaps:
(January-1986) will break up the month on the bound-
aries of the weeks, i.e., it will give those weeks or parts
of weeks that overlap the month. (See Figure 2a.) The
effect of a relaxed dicing operator is to select intervals
from C that have the appropriate relation with t. Thus
Weeks .overlaps. (January-1986) will break up the month
in the same way as above, but for the weeks at the begin-
ning and end of the month it will give the entire week (in-
cluding that part not overlapping the month). (See Figure
2b.) In contrast, Weeks :during: (January-1986) will give
only the weeks that are completely contained in the month.
(See Figure 2c.)’ Finally, Weeks :I: (January-1986) will
give only the partial week at the beginning of the month.
(See Figure 2d.)

C. The Slicing Operations

The slicing operators, denoted f/C and [f]/C, op-
erate on any collection, replacing each of the contained
order 1 collections with the result of the application of
the slicing operator. Operating on an order 1 collection
yields either a single interval or an order 1 collection (usu-
ally a subcollection of the original order 1 collection). The
expression f/C applies the selection function f to the col-
lection and returns a single interval, while [f]/C returns
a collection. F may be a predicate, in which case it con-
structs a collection containing the intervals which satisfy
the predicate. The expression [fl, f2, . . . , fn]/C is the col-
lection consisting of the individual applications of fl, f2,
. - . 7 fn to C in order.

In some cases, a selection function may not have a
result (e.g., the 29ths of Februarys), in which case the re-
sult is defined to be the empty interval E. Note that since
the dicing operators will never produce a collection that
contains E, any result that includes E is a sign of a failed
selection operation.

KNOWLEDGE REPRESENTATION / 369

The integers are defined as selection functions so that
n/C selects the nth interval in C and -n/C selects the
nth interval from the end. The function the is defined so
that the/C selects the single interval of C, and produces E
if C contains other than a single interval.

The function any is used to select intervals nondeter-
ministically. any/C selects a single interval of C. [any nJ/C
selects n intervals of C. [any -n]/C selects all but n inter-
vals of C. The any slicing operator has a subtly different
operation when used in a declarative statement - in that
case, it refers to an interval without specifying which one.
This usage of any has a close relationship to the existential
quantifier of the predicate calculus.

D. Examples of Collections

Table 1 gives a list of English phrases and their cor-
responding expressions in the collection representation.

IV APPLICATIONS

The reason for constructing this representation is to
provide a framework for a scheduling system. The pre-
vious sections have shown how terms commonly used in
scheduling can be easily expressed. The representation was
designed to address three areas of our group’s research on
scheduling: graphical display, natural language translation
(primarily generation), and reasoning (about schedules).

The illustrations in Figures 1 and 2 indicate the type
of graphical display that would be generated by the system.
The definition of each calendar can be made to contain
simple graphical display information, such as the shape
and orientation of any “boxes” in which they and their
contents are shown. The b oxes in Figures 1 and 2 are

unlabelled. An interval of a calendar could also carry tags
that could be used to label the boxes or to organize the
data in a tabular form.

The bus schedule of Figure 3 provides a good illus-
tration of this. The schedule is constructed as an order 2
collection, where each interval has been tagged. The col-
lection prefers to display intervals with the same tag in
the same column. The intervals in turn prefer to display
only their start times. Notice that in several places a table
entry is blank. Despite this, displaying the table presents
no problem.

Hampshire Amherst UMass Smith Mt. Holyoke

- - 8:20
lo:oo 1O:lO 10:20
11:oo 11:lO 11:20

&ii0 Every hour 6:lO .
. .

6:20
7:oo 7:lO 7:20
8:00 8:lO 8:20

11:oo 1l:lO 11:20

8:35 8:45
10:35 10:45
11:35 11:45

6:35 6:45
- 7:45
8:35 -

11:35 11:45

Figure 3. A Bus Schedule

The appointment calendar display of Figure 4 would
be treated in a similar fashion. In this case, the collection
of appointments is superimposed on another collection to
provide the time grid, with the roles of tags and starting
times reversed in the displayed table.

The English text in Table 1 indicates the type of nat-
ural language that could be produced or processed by the
system. Expressions in the collection representation can
be almost literally translated into natural language with
comprehensible results. Similarly, statements can be eas-

Table 1. English Collection Representation
Mondays 2/Days :during: Weeks
Januarys l/Months :during: Years

First Monday in January 1986 l/Mondays :during: Januarys :during: 1986/ Years
or equivalently: 1/ (2/Days :during: Weeks) :during:

First of every month
First Monday of every month

Last two Mondays of every month
Week of the 15th of each month

First full week of each month
Week of the first of the month

First week of the month
U.S. Election Day

The first (or only) day of t
The day after t

Any day of the week
Any day this week

l/Months :during: 1986/ Years
l/Days :during: Months
l/Mondays :during: Months
[- 1, -2]/Mondays :during: Months
the/ Weeks .overlaps. 15/Days :during: Months
I/ Weeks :during: Months
l/ Weeks .overlaps. l/Days :during: Months
l/ Weeks .overlaps. Months
l/Tuesdays .>. l/Mondays :during: November
l/Days .overlaps. t
l/Days .>meets. - 1 /Days .overlaps. t
any/ Days :during: We&s
any/Days :during: Weeks .overlaps. (Today)

370 / SCIENCE

9

10

11

12

:oo :20 :40

zjF?Ej

Figure 4. An Appointment Calendar

ily translated since the temporal components of the state-
ment are not distributed across a number of quantifiers
and predicates. For example, the statement

((Roy-worked)) contains Weekend-Days :during: (January)

can be glossed as “The time that Roy worked included the
weekend days in January.”

Since the expressions are stored symbolically, the sys-

tem need only generate the actual intervals that it needs.
For example, for the expression

23/Seconds :during: 457O/Minutes :during: 1986/ Years

the system naturally would not generate a data structure
containing the 31536000 seconds in 1986 before selecting
the one desired. If the system was asked whether two ex-
pressions conflicted and could not determine this by purely
symbolic means, it still would not need to generate all the
intervals in each collection. Only those subcollections and
intervals that have been determined to be possible candi-
dates for conflicts need to be generated (and this process
can be done recursively).

If scheduling conflicts occur, the system can replace
specific slicing operators with the any operator. For exam-
ple, the system could make the following successive gener-
alizations in searching for a non-conflicting schedule:

the/Mondays :during: l/ Weeks :during: Months

the/Anyday :during: I/ Weelcs :during: Months

the/Mondays :during: any/ Weeks :during: Months

the/Anyday :during: any/ Weeks :during: Months

Our motivation for this work has been to provide a
framework for the scheduling system. We are in the pro-
cess of building a scheduling system around the represen-
tation. We believe that the consideration of collections of
intervals is essential to the scheduling domain and that the
notation and accompanying semantics introduced in this
paper provide a natural medium for that consideration.

ACKNOWLEDGMENTS

We would like to thank Scott Anderson, Carol Brover-
man, John Brolio, David Lewis, James Pustejovsky, Pene-
lope Sibun, Philip Werner, Mary-Anne Wolf, and Bev
Woolf for their assistance in this research and/or the prepa-

ration of this paper. We would also like to thank Peter
Ladkin for sending us advance copies of his papers pre-
sented at this conference.

APPENDIX

The intersection of two intervals is defined by:

t flu E (max(t,,u,),min(tp,vp))

The cover of two intervals is defined by:

t u u E (min(ta,ucu),max(tp,ug))

The union of two intervals (t U u) is defined only if
the intervals overlap or meet and is equal to the cover of
the two intervals. The empty interval E = (00, -00) and
any interval that has o 2 /3 is automatically replaced by E.
This definition is motivated by the desire to have t n E = E
and t H E = t , for any t.

We use the following binary relations on intervals:

t overlaps u G t fl u # E

t during u = (ta 2 u,) A (tp I up)
t contains u E u during t

t<uzitp~u,
t>uEt&ug
t < u E (ta < u,) A (t/j 5 up)
t > u E (ta 2 U@) A (t/j 2 up)

t meets u E (tp = uQ)

The during, 5 and 2 operations form partial orders. Note
that t 5 u is not equivalent to (t < u) V (t = u); however,
t < u is equivalent to (t ‘: u) A ‘(t overlaps u).

REFERENCES

Allen, James F., 1985, “Maintaining Knowledge about
Temporal Intervals” in Brachman and Levesque,
Readings in Knowledge Representation. Morgan Kauf-
mann, pp. 509-521.

van Benthem, J.F.A.K., 1983, The Logic of Time. D. Rei-
del, Boston.

Ladkin, Peter, 1985, “Comments on the Representation of
Time” in Proceedings of the 1985 Distributed Artificial
Intelligence Workshop, Sea Ranch, California, pp. l37-
156.

Ladkin, Peter, 1986a, “Primitives and Units for Time
Specificat ion” in the Proceedings of the National Con-
ference on Artificial Intelligence, Philadelphia, Pennsyl-
vania.

Ladkin, Peter, 1986b, “Time Representation: A Taxon-
omy of Interval Relations” in the Proceedings of the
National Conference on Artificial Intelligence, Philadel-
phia, Pennsylvania.

Rescher, Nicholas, and Urquhart, Alasdair, 1971, Temporal
Logic. Springer-Verlag, New York.

KNOWLEDGE REPRESENTATION / 3’1

